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Abstract 

Composite structures, containing two or more sublattices 
in one crystal, are of importance in the search for new 
materials. They are classified in terms of the interlattice 
matrix relating the sublattices, and by the use of chemical 
criteria. The use of superspace to interpret the diffraction 
pattern and perform calculations on electronic structure 
and lattice energy is referred to. The composite low- 
dimensional conductors (BEDT-TTF)Hgo.776(SCN) 2 and 
(BEDT-TI'F)4 Hg2.88 Br 8 (BEDT-TTF -- bisethylene 
dithiotetrathiafulvalene) are discussed as examples. Of 
particular interest are the interaction between the 
sublattices and the change of structure and properties 
as a function of temperature. 

Introduction 

The crystallography of small unit-cell crystals is an 
essential component in the search for materials with new 
and interesting properties, as illustrated by the structural 
studies on the many varieties of high T¢ superconducting 
ceramic materials, and by new developments in the field 
of microporous materials such as zeolites and AIPO5 
polymorphs. To quote Cheetham (1994): 'it has 
become strikingly apparent that the most interesting of 
these materials exhibit complex stoichiometries - even 
non-stoichiometries - and include several com- 
ponents'. 

Solids with composite structure are of particular 
relevance in this context. They contain two or more 
sublattices in one crystal. The sublattices are generally 
incommensurate in at least one direction, which implies 
that they are nonstoichiometric, as the ratio of the unit- 
cell volumes will deviate from integer values. When the 
components carry a net charge, as is common, mixed 
valency occurs by necessity. Composite structures occur 
naturally in minerals, such as valleriite 
[Mgo.68AIo.32 (OH)2 ] 1.562 [Fel.07Cuo.93 $2 ] (Evans & 
Allmann, 1968; Organova, Drits & Dmitrik, 1972, 
1973), and in many multicomponent synthetic materials. 
Among the best known examples of the latter are 
tetrathiofulvalene iodine, (TTF)7Is_ x (Johnson & Wat- 
son, 1976), and mercury arsenic hexafluoride Hg3_~AsF 6 
(Brown et al., 1974). Composite structures have been 
referred to by a number of names, including misfit 
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structures, intergrowth structures, chimney ladder struc- 
tures and Vernier structures. 

The number of known composite solids has increased 
rapidly in the past decade, although only very few cases 
with more than two sublattices are known. Since the 
sublattices interact through bonded and nonbonded 
interactions, distortions with the periodicity of the 
neighboring sublattice are introduced in each of the 
lattices. The sublattices are therefore modulated to an 
extent determined by the strength of the interactions. 
This adds additional complexity to these already unusual 
materials. 

Direct space classification of composite crystals 

The coexistence of two translational lattices in one body 
imposes a number of conditions if overlap is to be 
prevented. For two periodic objects to coexist in one 
crystal, space fitting requirements must be obeyed. 

The relation between two direct space lattices of a 
composite crystal structure may be described by the 
equation 

A 2 -- 0.A I , (1) 

where 0. is a (3 × 3) interlattice matrix relating the direct 
space translations of the sublattices. The corresponding 
reciprocal space relationship is given by 

A 2 (0.-l)rA~ * * (2) • = --0. AI. 

A composite crystal may consist of two different types 
of columnar structures with parallel but unequal repeat 
periods along the column axis. We will describe such 
structures as columnar composite structures. The condi- 
tion that the columns be parallel restricts the interlattice 
matrix 0. to the following form 

F 0.11 0"12 0"13 

0 . - - / 0 . 2 1  0.22 ( 7 2 3 ,  (3) 

Lo 0 0.33 

where c is taken as the common column direction. The 
columns must fit together into an inf'mite array in the 
plane perpendicular to the column axis. This does not 
imply, however, that the al and b~ axes must be parallel 
to a 2 and b 2. The a 2 axis may be in the plane defined by 
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a~ and el, and b 2 in the plane of b~ and c 1, illustrated in 
Fig. l(a). The direct space interlattice matrix is then 
given by 

0.11 0 0.13 1 
0 . =  0 0.22 0"23"] (4) 

0 0 0"33 

To avoid overlap of the two types of columns, the 
diagonal elements 0"1! and 0"22 must be integers or integer 
fractions. It follows that the direct space description of 
columnar composite structures requires five basis vectors 
in the three-dimensional space of the crystal. 

Using (3), the reciprocal space relationship for 
columnar composite structures is obtained as 

1/0"11 0 0 
A~ = 0 1/0"22 0 A; ,  (5) 

-0"13/(0"110"33) -0"23/0"220.33 1/0.33 

which implies that the a* and b* axes of the two lattices 
are parallel. Thus, the two reciprocal lattices have the hkO 
plane in common. The a*,and b* axes are common when 
0.11 = 0"22 = 1, as is usually the case. Expression (5) 
shows that columnar composite structures are described 
by four basis vectors in reciprocal space. 

A second class of composite structures consists of 
stacked layers of different chemical composition. We 

(a) 

(b) 
Fig. 1. Schematic illustration of the packing of the lattices in a 

composite structure. (a) Column composite structures, (b) layer 
composite structures. 

will refer to this class, illustrated in Fig. l(b), as layer 
composite structures. In this case the 0. matrix is given by 

°'ll 0.12 0 "1 
0 . =  O'21 0"22 0 ] , (6) 

0"31 0"32 0"33 

where the in-plane axes have been labeled as a and b. 
Since the planes cannot overlap, the 0"33 element is 
restricted to have an integer value by the space fitting 
requirement. Expression (6) implies the use of six basis 
vectors: al,  bl ,  c I and a 2, b 2, e 2. However, quite 
frequently the a and b axes of the two sublattices can be 
selected to be parallel, leading to 

0" = 0"22 , ( 7 )  

1_ 0"31 0"32 

in which n is an integer. When (7) applies, a four-basis- 
vector direct space description suffices. 

Since e I and c 2 are not parallel, (a*) l, (a*) 2 and (b* h,  
(b*)2 will not be parallel either, unlike in columnar 
composite structures. The reciprocal interlattice matrix is 
now given by 

|/0.11 0 --0"31///0"11 
0"* : 0 1/0.22 --O'32/F/O'22 (8) 

0 0 1/n 

For layer composite structures, only the c* axis is 
common to the two sublattices; there is in general no 
common reciprocal lattice plane, as is the case for 
columnar composite structures. The diffraction pattern is 
therefore described by five basis vectors, compared with 
four basis vectors for two-component column composite 
structures. In direct space, the reverse is true as (7) 
involves only four basis vectors, while the matrix (4) 
relates a total of five vectors. 

Although we have distinguished layer and column 
composite structures according to the form of the 
interlattice matrix, examination of the matrices (4) and 
(7) shows that intermediate cases classifiable in either 
category will occur. The interlattice matrix may be a 
diagonal matrix, or may be reducible to a diagonal matrix 
through a simple transformation of one of the lattices. 
The case of (Bio.55Sr3.85Cas.6o)CUlTO29 (Frost-Jensen et 
al., 1993; see Kato, 1990, for a similar structure of 
different composition) is illustrated in Fig. 2. The 
interlattice matrix is diagonal; the flat CuO2 'ladders' 
at ] and 3 along the vertical direction of the diagram can 
be considered either as columns, or as forming sheets 
through sideways interactions between the individual 
ladders. 

Even though the distinction on the basis of symmetry 
is not always clear, as demonstrated by the latter case, the 
nature of the chemical interactions within the sublattices 
may be unambiguous. The sublattices of the heavy-metal 
sulfide intergrowth stuctures, such as (SnS)i.17NbS 2 
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(Wiegers et al., 1989), are related to each other by a 
diagonal tr matrix. Nevertheless, the existence of layers 
within the structures makes the classification unambig- 
uous. Such a chemical classification can include 
additional detail. Although a structure may be columnar 
on the basis of the symmetry classification, one 
component of the structure may form a strong three- 
dimensional lattice through covalent bonding, as in 
zeolites, or hydrogen bonding, as in urea inclusion 
complexes. In such channel structures, atoms or 
molecules forming the second lattice are positioned like 
'guests' in the channels. In the urea host-guest inclusion 
complexes, long-chain hydrocarbons or substituted 
hydrocarbon molecules are included in channels within 
the hydrogen-bonded framework of urea molecules 
(Forst, Jagodzinsky, Boysen & Frey, 1987, 1990; Harris 
& Thomas, 1990; Harris, Smart & Hollingsworth, 1991). 
No composite examples of zeolite inclusion complexes 
appear to have been described at this time. 

We note that the distinction between channel struc- 
tures and columnar structures is not always clear-cut, as it 
depends on the nature of the interaction between the host 
molecules. 

The occurrence of  composite structures 

While composite structures have for a long time been 
considered as oddities, they are not uncommon. They 
occur as minerals, and are often easily formed in the 
laboratory through 'self-assembly' of different 
components. 

An early review of layer composite structures by 
Makovicky & Hyde (1981) lists a number of minerals 
with composite structures. Several of these, including 
koenenite and valleriite, have brucite-like layers consist- 
ing of Mg 2+, AI 3+ and/or Fe 3+ hydroxides with 
octahedral coordination of the metal atom and the 
general composition M(OH) 2. The hydroxide layers are 
interspersed with a NaCl-like layer of composition 
[Na4(Ca,Mg)2CII2] 4- in the case of koenenite (Allmann, 
Lohse & Hellner, 1968), and a mixed sulfide layer of 
composition [Fel.07Cuo.93S2] °49-  in the case of valleriite 
(Evans & Allmann, 1968). 

Layer composite structures, often referred to as 
intergrowth structures, occur in both natural and 
synthetic heavy metal sulfides. The composition 
(MX)xTX 2 is common, as in (LaS)l.14NbS 2 synthesized 
by Meerschaut, Rabu & Rouxel (1989) and analyzed by 
Wiegers, Meetsma, Haange, van Smaalen & de Boer 
(1990), and the mineral cylindrite ~FePb3SnaSb2Sl4, in 
which layers alternate with respective compositions of 
(Pb,mg)ta.3Sns.7Sba.4Fel.6S26 and Sn8.2S2.3Fel.sS24. The 
composition (MX)/TX 3 occurs in the mineral cannizzarite 
with M and T representing both Pb and Bi, i.e. both 
layers contain Pb and Bi (Matzat, 1979). Other known 
inorganic examples are alloys such as RelTGe22 
(Jeitschko & Parth6, 1967) and 'infinitely adaptive' 

compounds of the type Bap(Fe2S4)q, consisting of chains 
of edge-sharing Fe - -S  tetrahedra and columns of Ba 
ions (Swinnea & Steinfink, 1980). 

Another large class of laboratory-prepared composite 
materials contains columns of iodine species such as 13 
and I~- or higher homologs, embedded in a matrix of 
large organic or metallo-organic molecules (Coppens, 
1982). The repeat period along the iodine columns is a 
function of the nature of the iodine species. A well 
studied example is tetrathiofulvalene iodine (TTF)7Is_ x, 
analyzed by Johnson & Watson (1976). 
TMA(TCNQ)2/3I forms a commensurate composite 
structure in which the 13 repeat of 9.66,~ is 1.5 times 
the repeat in the TCNQ and TMA columns (Coppens et 
al., 1980). In the diffraction pattern, the iodine layers are 
often diffuse along the layer direction, indicating a lack 
of correlation between the atomic positions in different 
columns. There is two-dimensional order in the lateral 
direction perpendicular to the columns, and one-dimen- 
sional order along the chains ( '2+1 '  dimensional order), 
but not full three-dimensional order in the iodine 
sublattice. In TMA(TCNQ)2/3I, the diffuseness of the 
layers, and therefore the degree of order, is a function of 
crystallization conditions and is probably also affected by 
varying the temperature of the sample. 

The intercalated layer of graphite intercalation com- 
pounds may show long-range order along the layer 
direction, leading to multi-sublattice structures. 
Examples are FeCl3-graphite (Cowley & Ibers, 1956), 
and C64Na in which eight graphite layers alternate with a 

• • 

Fig. 2. The composite structure of MIoCUlTO29 viewed down the c axis. 
Filled circles are Cu atoms, O atoms are small open circles and M (Bi, 
Sr, Ca) are large filled circles. The CuO 2 ribbons at ¼, ~ along the 
vertical axis of the diagram form the second sublattice (from Frost- 
Jensen et al., 1993). 
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single Na layer (Asher, 1959). Many more such cases are 
likely to be found, especially when the temperature 
dependence of intercalation compounds is examined in 
more detail. 

Composite structures are quite common among low- 
dimensional mineralo-organic conductors, often obtained 
by electrocrystallization. Some examples of this class 
discussed in the following section are (BEDT- 
TTF)Hg0.776(SCN) 2 and (BEDT-TTF)nHg3.sgBr 8. 

An example: the structure of 
(BEDT-TTF)Hgo.776(SCN)2 

Crystals of (BEDT-TTF)Hgo.776(SCN) 2 are grown by 
electrocrystallization (Wang et al . ,  1991). The Hg atoms 
form the second sublattice, related to the first sublattice 
by the matrix 

a = 0 1.2903 . 
0 0.9083 

In this orientation, the b axis defines the incommensurate 
direction, and the hOl reflections are common to both 
lattices. The projection down the incommensurate axis is 
shown in Fig. 3. The Hg atoms are coordinated by both 
ends of the SCN- ions. However, because of the 
incommensurability of the two b axes, the coordination 
cannot be satisfied without the introduction of a 
distortion. This is clearly shown in the projection of the 
average structure (without the distortion), onto the a b  

plane, shown for the Hg and SCN entities in Fig. 4(a). 
The different periodicity of the Hg atoms and the SCN- 
ions in the vertical dimension of the diagram is evident. 
The lack of commensurability between the repeats leads 
to a continuously varying coordination, including 
unacceptable distances as short as 1.90A for Hg- -S .  
The interaction between the components of the two 
sublattices introduces a modulation in each (Fig. 4b), 
with a repeat equal to the periodicity of the second 
lattice. The modulative displacements are as large as 
0.89 ,~, for the Hg atoms, while the SCN- displacement 

~, I / i, I ~ 

h 0 ~ c 

Fig. 3. The projection of the structure of (BEDT-'I'q'~)Hgo.776(SCN)2 
down the common b axis direction (from Wang et al., 1991). 

waves have amplitudes of 0.16,~ and 12.1 ° for the 
translational and rotational waves, respectively. 

The effect of the modulations on the H g - - S  distances 
is shown in Fig. 5, in which the distances are plotted as a 
function of the four-dimensional coordinate t (de Wolff, 
1977), which ensures that all the distances in the 
aperiodic crystal are represented. With the modulation 
(lower half of the figure) no anomalously short distances 
occur. When the bond valence sum (Brown & Altermatt, 
1985) is evaluated for the Hg atom, it is found to be close 
to 2 when the modulation is included, but unrealistically 
large (because of the short distances) for the average 
structure without the modulation [Fig. 6 (Coppens, 
Cisarova, Bu & Sommer-Larsen, 1991)]. 

It is clear that the strong modulation in (BEDT- 
TTF)Hgo.776(SCN)2 is imposed by the unusual circum- 
stances that the Hg atom is coordinated by S and N atoms 
in a lattice with different periodicity, so that the chemical 
bonding requirements can only be satisfied by large 
displacements of the coordinating atoms. The interaction 
between the two components in a column composite 
structure is illustrated in Fig. 7. 

The diffraction pattern of composite crystals and the 
introduction of superspace 

As each of the sublattices of an incommensurate 
composite crystal is incommensurately modulated with 

(a) (b) 
Fig. 4. The coordination of Hg and SCN in (BEDT-TrF)Hg0.776(SCN) 2 

projected on the ab plane. The b axis is the incommensurate axis. 
(a) Without the modulation; (b) with the modulation (from Wang et 
al., 1991). 
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the periodicity of  the adjacent sublattice, satellite 
reflections will occur. The diffraction pattern of  a 
composite crystal is the superposition of the diffraction 
patterns of the two sublattices, plus satellite reflections 
representing the modulations (Janner & Janssen, 1980; 
van Smaalen, 1989). 

As an example we will discuss the case represented by 
(5). The main reflections of the two sublattices have the 
indices hklO, and hkOm, respectively, the reciprocal plane 
hkO0 being common 'main-main' reflections. Reflec- 
tions hklm with all nonzero indices occur because the 
modulation in sublattice A has the periodicity of the 
incommensurate repeat of sublattice B and vice versa. 
These 'pure' satellite reflections are at the same time 

Distance Hg--S 

2.9 

2.7 

2.5 

2.3 

2.1 

1.9 

0.2 0.4 
(a) 

O.6 O.8 1 
l 

Distance Hg--S , 

2.9 

2.7 

2.5 

2.3 

0.2 0.4 

(b) 

/ 

0.6 0.8 1 
l 

Fig. 5. Hg- -S  distances as a function of the four-dimensional 
coordinate t. (a) For the average structure, (b) including the 
modulation (from Coppens, Cisarova, Bu & Sommer-Larsen, 1991 ). 

3.9 
3.7 
3.5 

:~ 3.3 
3.1 

E 29 (a) 
2.7 
2.5 e.- 

-~ 23 
> 2.1 

1.9 (b) 
0.2 0.4 0.6 0.8 I 

t 
Fig. 6. Valence sums for Hg as a function of the four-dimensional 

coordinate t. (a) For the average structure, (b) for the true structure 
including the modulation (from Coppens, Cisarova, Bu & Sommer- 
Larsen, 1991). 

mth-order satellites of  sublattice A, and lth-order satellites 
of  sublattice B. Using the same terminology, the hklO and 
hkOm reflections are mixed main-satellite reflections, as 
they are main reflections of one, and satellite reflections 
of the other sublattice. 

de Wolff (1974) and Janner & Janssen (1977) realized 
that the periodicity, absent in at least one direction in the 
aperiodic crystal, can be retrieved by the use of 
superspace. It is schematically illustrated in Fig. 8, in 
which physical space is represented by the line R3, along 
which the two different periodicities can be observed. To 
retrieve the periodicity, the reflections are lifted out of 
the line R3 into the additional dimension. The main 
reflections of the second lattice lie along the axis bS,, 
which is obtained by adding the unit vector perpendicular 
to R3 to the reciprocal axis b 4" b~l = b 4 -3 L e. The satellite 
reflections, indicated by crosses, occupy the nonaxial 
grid points of  the lattice. 

The superdimensional direct space representation is 
obtained by using a~b~ = g0, in which a~ are the four- 
dimensional direct space axes. This means that at least 
one of the axes of a second sublattice is lifted out of 
three-dimensional space, as illustrated schematically in 

~,~,,I-.tion of B lattice 

Fig. 7. Illustration of  the interaction between the two components in a 
column composite structure. A distortion with period of sublattice A 
is introduced in sublattice B, and v ice  versa .  

b4 t 

X X 

~ R 3  

X 

Fig. 8. The extra dimension in reciprocal space of  a composite crystal. 
R3 represents three-dimensional space, with different periodicities of 
the two sets of reflections. Circles represent the main reflections of 
the two lattices; the crosses are satellite reflections. 
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Fig. 9. As in modulated structures, the atoms of the first 
sublattice become wavy strings along the extra dimen- 
sion in superspace, with the amplitude of the wave 
corresponding to the modulative displacement. The 
atoms of the second sublattice are similar, but the strings 
in the fourth dimension are now in a direction parallel to 
one of the other direct axes of superspace, as illustrated 
in Fig. 9. The coordinate t, used in Figs. 5 and 6, varies 
from 0 to 1 in the direction perpendicular to R3. As it 
corresponds to a unit repeat in periodic superspace, it 
offers the means to represent all values of a property, 
such as an interatomic distance, anywhere in the 
aperiodic crystal in a single diagram. 

Superspace group theory has been developed exten- 
sively (Janner & Janssen, 1977, 1979; de Wolff, Janssen 
& Janner, 1981; Janner, Janssen & de Wolff, 1983; van 
Smaalen, 1991; Janssen, Janner, Looijenga-Vos & de 
Wolff, 1992). Scattering factor expressions for composite 
structures can also be found in the literature (Coppens, 
Maly & Petricek, 1990; Yamamoto, 1993). 

An interesting consequence of the nature of the 
diffraction pattern of composite structures is that 
information on the modulation of one sublattice can be 
obtained directly from a group of main-satellite reflec- 
tions phased by the contribution of the main component. 
For (BEDT-TTF)Hg0.776(SCN)2 (b axis common and 
incommensurate), the Fourier map based on the hklO 
reflections is the projection of the four-dimensional 
structure down the b axis of the Hg lattice, which is the 
modulation vector of substructure (I) and a lattice 
translation of substructure (II). Thus, atoms of substruc- 
ture (I) appear smeared out at their average positions, 
while those of substructure (II) show up as strings along 
b~ projected down the b 2 axis, which is the b axis of the 
second substructure. This synthesis can be used to obtain 
the average position of the atoms of substructure (I) as an 
input model for a least-squares refinement, as well as to 

J 

/ J J  

Fig. 9. Representation of a composite crystal in four-dimensional direct 
space. The horizontal line represents three-dimensional space, with 
two different periodicities indicated. The lines in the fourth 
dimension are strings representing the atoms of the two components 
without taking into account the modulation. 

provide information on the modulation of the atoms of 
substructure (II). A section showing the Hg-atom string 
is reproduced in Fig. 10 (Cisarova, Maly, Petricek & 
Coppens, 1993). 

The temperature dependence of composite structures 

The temperature dependence of composite structures is 
relatively unexplored. Unless vacancies develop, or a 
fraction of one component can separate from the crystals, 
as seems to be the case for the three-sublattice structure 
of Hg:.86AsF 6 (Brown et al., 1974), the volume 
contraction on cooling of coexisting sublattices must be 
the same. This condition is quite well fulfilled for 
(BEDT-TTF)Hg0.776(SCN) 2, as shown in Fig. 11. The 
temperature dependence of the reflection intensities of 
(BEDT-TTF)Hg0.776(SCN) 2 gives evidence for an addi- 
tional phonon temperature factor for the Hg sublattice 
(Pressprich, van Beek & Coppens, 1994), which reflects 
a fluctuation of the phase of the modulation wave 
(Overhauser, 1971; Axe, 1980). 

The two-component structure (BEDT-TTF)aHg2.88Br8 
has, at room temperature, two polymorphic modifications 
both grown electrochemically, but under slightly differ- 
ent conditions (Li, Koster & Coppens, unpublished 
results). The different packing in the two phases is 
illustrated in Fig. 12. There are indications that the Hg 
lattice in the orthorhombic phase undergoes a transition 
below 100 K, while the monoclinic room-temperature Hg 
lattice of the monoclinic modification becomes triclinic 
slightly below room temperature, with unit-cell angles 
increasingly deviating from 90 ° as the temperature is 
lowered (Table 1; Li, 1994). This phase transition affects 
the relative position of the two components, while the 
structure of each appears mostly unchanged. It is 
interesting that the material becomes superconducting 
on further cooling to 4.2 K (Williams et al., 1992; Lee, 
Naughton, Koster & Coppens, unpublished results). 

Hg al 
-0.2 0.0 0.2 0.(/ I ' " 

, . o  b~~ 
Fig. 10. hklO Fourier section of (BEDT-'IqT)Hg0.776(SCN)2 containing 

the Hg atom. The a axis is horizontal; the b axis, which is the fourth 
axis for the Hg lattice, is inclined (from Cisarova, Maly, Petricek & 
Coppens, 1993). 
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The two polymorphs of  (BEDT-TTF)nHg2.ssBr8 
appear to be the first composite structures for which 
phase transitions have been reported. However, phase 
transitions should be quite common as contraction on 
cooling will increase the interaction between the 
component  lattices. In the low-dimensional composite 
structure of  (5,10-diethylphenazinium) 2I]. 6, for example, 
the disorder in the iodine columns is reduced by cooling 

o V (ETSCN) l 
x V (H9) I 

62S 

o<: 

= 
61S . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . .  ~ . . . . . . . . . . . . .  (~  0 . . . . . . . .  

o 9 

sic ............... i ........ R ........ i .................. ~ .............. i ........ ; ........... : ............... 

i 
605 0 i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  ~ .  ~ . . . . . . . . . . . . .  

o 

6 0 (  S O  1 0 0  1 5 0  2 ( ~ )  2 5 0  3 0 0  3 5 0  

T (K) 

Fig. l l. Cell vo lumes  for  the two sublatt ices in (BEDT-  
TrF)Hg0.77o(SCN): as a function o f  temperature.  For the compar i son ,  
the vo lume  o f  the ( B E D T - T I ' F S C N )  lattice has been normal ized  to 
the same average  value as that o f  the Hg lattice (based on data f rom 
Pressprich, van Beek & Coppens ,  1994). 

X 

(a) 

:) 

(b) 

Fig. 12. Packing diagrams of the structures of (BEDT-TI'F)4Hg2.ssBr 8 
viewed down the b axis. The Hg atoms which form the second 

1 sublattice, and are located at z =~,~ in both structures, are not 
shown. Large open circles: Br atoms; small open circles: S atoms. 
(a) Orthorhombic phase; (b) monoclinic phase (Li, 1994). 

Table 1. (BEDT-TTF)4Hg2.88Br8 cell dimensions (Li, 

Hg.cel l  
a (A) 
b (,~) 
c (A) 
a(°) 
~(o) 

× (9 
V (A 3) 

BEDT-TIT cell 
a (A) 
b (A) 
c (A) 
a(°) 
t~(o) 
r(o) 
V (A 3) 
Volume ratio 
Superspace 

group 

1994) 

Orthorhombic phase 
Room 

temperature 

37.26 (5) 
8.719 (2) 
3.872 (4) 

1258 (3) 

Monoclinic phase 
Room 

temperature "~70 K 

37.543 (4) 37.95 (4) 
8.717 (I) 8.80 (1) 
3.893 (1) 3.858 (5) 

- -  96.73 (5) 
81.39 (1) 79.064 (8) 

- -  91.257 (2) 
1259.7 (4) 1256 (2) 

37.21 (I) 
8.718 (2) 

11.273 (3) 

3657 (2) 
2.91 

P:Pman:  I I ] (0 ,0 ,  y) 

38.610 (2) 38.64 (1) 
8.717 (1) 8.629 (4) 

11.223 (1) 11.011 (6) 

74.058 (7) 74.70 (4) 

3631.4 (8) 3514 (2) 
2.88 2.86 

P: C2/c: il (0,0, ×) 

while the modulat ion increases, as is evident from the 
183-333 K diffraction study reported by Rosshirt, Frey, 
Boysen & Jagodzinsky (1985). 

Ca lcu la t ion  of  the properties  of  composi te  structures 

The calculation of  the properties of  composite structures 
requires the use of  superspace. Sommer-Larsen & 
Gajhede (1991) have developed an approximate method 
for the calculation of  the band structure of  modulated 
structures in which the transfer integrals are developed as 
a Fourier series in the extra dimension.  This method, 
when applied to the BEDT-TTF substructure of  (BEDT- 
"VFF)Hg0.776(SCN)2, shows that the modulation imposed 
in the composite structure creates a gap at the Fermi 
surface in certain regions of  reciprocal space, and thereby 
prevents the nesting of  the Fermi surface and a 
subsequent metal- insulator  transition on cooling (Fig. 
13). Not surprisingly, the density of  state is also quite 
strongly affected by the modulation (Sommer-Larsen & 
Coppens, 1992, unpublished results). 

The calculation of  the lattice energy using pairwise 
a tom-a tom potentials can be modified to apply to 
modulated and composite structures, even though they 
are nonperiodic,  using the superspace group description. 
To obtain the lattice energy, all pairwise interactions 
within each sublattice, and between sublattices, must be 
integrated over the four-dimensional coordinate. The 
composite crystal 's  lattice energy W is given by 

1 

w = ~ ~ f eij[rij(t)]dt, 
km ij O 

where the sum km is over all sublattice combinations 
(including the 'self-interaction') ,  the sum ij is over all 
atom pairs in sublattices k and m, and eij is the pairwise 
interaction. 
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The  in tegrat ion over  the fourth coord ina te  has been  
appl ied to the m o d u l a t e d  s tructure of  th iourea  by Gao  & 
Coppens  (1989). For  th iourea ,  the ca lcu la t ion  cor rec t ly  
predicts  an in te rmedia te  ene rgy  for  the m o d u l a t e d  phase,  
w h i c h  occurs  in the 1 6 9 - 2 0 2 K  tempera tu re  interval  
b e t w e e n  the paraelect r ic  h igh- t empera tu re  and the ferro- 
e lectr ic  l ow- tempera tu re  phases  of  th iourea .  S imi la r  
ca lcula t ions  on compos i t e  s t ructures are necessa ry  to 
ach ieve  an under s t and ing  o f  the phase  t ransi t ions in these 
materials .  

Concluding remarks 

W e  conc lude  that the f ield o f  compos i t e  structures 
remains  relat ively unexplored .  A l t h o u g h  the s y m m e t r y  
c lass i f icat ion is wel l  unders tood ,  a relat ively small  
n u m b e r  of  compos i t e  crystals  has been exp lo red  in 
detail ,  and little is k n o w n  about  the t empera tu re  
d e p e n d e n c e  of  m a n y  of  the structures that have  been  
studied.  G iven  the ongo ing  search for  c o m p l e x  n e w  

L )' 

,,"! y 

(a) 

(b) 

Fig. 13. Calculated Fermi surface for (BEDT-T1T)Hgo.776(SCN)2 in the 
a'b* plane. Hatched areas indicate regions where all levels are filled. 
F = 0, 0; X = rra*, Y = zrb*. (a) Average structure, the nesting 
vector combining two sides of the Fermi surface is shown; 
(b) modulated structure. Part of the hatched regions now end up in a 
band gap, rather than on the Fermi surface. A nesting vector no 
longer reaching the other part of the Fermi surface is shown (from 
Sommer-Larsen & Coppens, 1992). 

materials  wi th  in teres t ing propert ies ,  the field is Likely to 

g row cons ide rab ly  in c o m i n g  years.  

Part  o f  the work  r e v i e w e d  here  is based  on P h D  theses 

and publ ica t ions  of  m y  c o w o r k e r s  X. Bu,  I. Cisarova ,  A. 
Fros t -Jensen,  Y. Gao ,  G. Koster ,  R. Li, K. Maly ,  V. 
Petr icek,  M. R. Presspr ich ,  P. S o m m e r - L a r s e n  and C. van 
Beek ,  w h o s e  cont r ibu t ions  are gra teful ly  a c k n o w l e d g e d .  
I w o u l d  like to thank the Nat ional  Sc i ence  Founda t i on  for  
f inancial  support  o f  this work  ( C H E 9 0 2 1 0 6 9  and 
C H E 9 3 1 7 7 7 0 ) .  
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